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Abstract 

 
In the cloud environment, microservices are implemented through Kubernetes, and these 
services can be expanded or reduced through the autoscaling function under Kubernetes, 
depending on the service request or resource usage. However, the increase in the number of 
nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function 
make it very difficult for system administrators to conduct operations. Artificial Intelligence 
for IT Operations (AIOps) supports resource management for cloud services through AI and 
has attracted attention as a solution to these problems. For example, after the AI model learns 
the metric or log data collected in the microservice units, failures can be inferred by predicting 
the resources in future data. However, it is difficult to construct data sets for generating 
learning models because many microservices used for autoscaling generate different metrics 
or logs in the same timestamp. In this study, we propose a cloud data refining module and 
structure that collects metric or log data in a microservice environment implemented by 
Kubernetes; and arranges it into computing resources corresponding to each service so that AI 
models can learn and analogize service-specific failures. We obtained Kubernetes-based 
AIOps learning data through this module, and after learning the built dataset through the AI 
model, we verified the prediction result through the differences between the obtained and 
actual data. 
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1. Introduction 

A microservice refers to an independent service deployment method that does not affect the 
relationship between services, unlike the existing monolithic system that has dependency 
between the services. Regarding monolithic architecture, all services should be updated if the 
service traffic is excessively increased, but microservices can directly modify the service that 
has a failure [1]. Recently, the adoption of cloud-based microservice methods in service 
distribution methods has been increasing [2-6]. Kubernetes is a representative tool used to 
build a cloud, and using it, it is possible to easily expand or reduce service-specific resources 
by scaling them up according to service requests. If traffic increases in a particular 
microservice in Kubernetes, the service will be implemented within the range wherein the 
services are expanded or reduced according to their usage. However, the usage of all the 
services is not increased or decreased equally, and the manager needs to monitor and manage 
the characteristics of each service directly. 

As a response to these problems, the number of research cases under Artificial Intelligence 
for IT Operations (AIOps) is increasing. AIOps collects cloud and infrastructure data, analyzes 
and patterns them through AI models, and then predicts the future usage and failures of the 
data [7,8]. However, there is no reference point for a separate data purification method for 
AIOps. Although there are studies on AIOps-related usage prediction, there are many on using 
it to learn benchmark dataset such as Google computing cluster and Backblaze disk statistics 
data sets, and few using custom data [9,19,20-24]. The dataset is somewhat different from the 
one collected directly from Kubernetes, and there is a disadvantage that it is difficult to apply 
it to actual services. To apply AI predictions of usage to an actual service, a system is needed 
that allows cloud engineers and data engineers to collaborate and extract and preprocess the 
data themselves. With the increasing number of large-scale services that offer more runtime 
performance and include more information for monitoring, it seems that there will be a 
growing need for microservice metric/log analysis and management, and a dataset suitable for 
microservice analysis using AIOps needs to be developed [28]. 

Cloud data have a characteristic time series that is recorded in real time and contains a huge 
amount of data because it records both generated service and container data. For example, 
when large-scale micro-services are deployed, the cloud records the service-specific 
metric/Log data. Due to the cloud characteristics of preventing application overload and 
stabilizing resources between services, a single task is performed on several nodes. 
Additionally, regarding Kubernetes, if the same service is placed on another node, several Pods 
will be created according to the hash value after the service name. There is simultaneous 
duplication of data even if it is the same service, and as abnormal time series data are generated, 
there is a problem in securing the data required for the AI/machine learning (ML) model 
learning. Additionally, there is no separate guideline for refining data, making data difficult to 
preprocess. Fig. 1 shows an example of the process. 

In this study, we propose a cloud data refining module for collecting data in a microservice 
environment under Kubernetes. The data refining module is designed to refine data for 
learning AI/ML models that can predict and infer failures by service. In Kubernetes through 
data refining module, after Metric / Log data is collected, the duplication value is pre-
processed at each service and it refines to data capable of the AI / ML model is the learning. 
The data refining module was designed to collect data from Prometheus and perform time-to-
time data matching and quarterly preprocessing for each service. Through the proposed 
module, cloud engineers and data engineers can easily generate AIOPS learning data without 
complicated processes, and obtain data that meets the characteristics of AIOps analysis at 
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various levels such as Pod, Node, and Cluster. Due to the distributed nature of microservices, 
we collected function-specific metric average data for predicting resource usage. By providing 
average values instead of individual predictions for each service, we can ensure the diversity 
of analysis targets. 

We obtained AIOps learning data suitable for analyzing resource usage in microservices 
under Kubernetes through the cloud data refining module, and validated it using the Informer 
model, which is suitable for long-term prediction of microservices. After learning the resource 
prediction process for each service through the Informer model, we verified the prediction 
results using the MSE and MAE indicators and confirmed that we can create a learnable dataset 
based on this. The proposed module allows for generating AI/ML models for predicting and 
inferring failures by service without the need for collaboration between cloud engineers and 
data engineers. 

 
Fig. 1. Mismatch on same time-to-same service 

2. Related Works 

2.1 Cloud Metric/Log Data Application  
There are studies on monitoring systems that use Prometheus & the Elasticsearch, Logstash, 
and Kibana (ELK) stack to collect and utilize data generated in the cloud. There are many 
studies [13-15] wherein Prometheus and Grafana are used to collect and monitor metric data 
generated in the system [6,10-12,20,21]; and Elasticsearch and Kibana are used to collect log 
data generated in the network. However, in most studies, these tools only monitored the data; 
there is only one research case [24] that directly collects and processes microservice data for 
AI/machine learning training. 
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2.2 Resource Prediction 
For predicting cloud system utilization, we focused on ML/deep learning with the goal of 
predicting the workload, central processing unit (CPU), and random access memory (RAM) 
utilization. There were studies wherein the autoregressive integrated moving average (ARIMA) 
model, which is based on statistical techniques, was used [16,17]; the characteristics between 
cloud virtual machines (VMs) were classified through co-clustering, and the changes in 
workload patterns were predicted through the Hidden Markov model [18]. In this study, data 
on 21 days of CPU usage were used as learning data to observe the variations in the VMs. But 
these time-series data mining techniques have limitation in accuracy when applied in cloud 
environments due to their poor feature extraction capabilities. [19] 

There have also been studies wherein predictions have been attempted using long short-
term memory (LSTM) in Google Cluster Data and Unix Distributed System Load Tracking 
Data Set [19]. This was the first study to apply an RNN-based deep learning methodology for 
predicting host load, a metric used to measure system load. While the study demonstrated 
higher accuracy than data mining-based models, LSTM's limitations include its short 
prediction horizon and difficulty in parallel computation, making it unable to process large 
amounts of data. Another study utilized the ML-based Hybrid GA-PSO algorithm for multi-
resource prediction [22]. By combining GA (Genetic Algorithm) to find global optima and 
PSO (Particle Swarm Optimization) to analyze possible solutions and find the best optimal 
value, the efficiency of the deep learning network's prediction was increased. The data was 
collected in Kubernetes, and the algorithm's accuracy was verified using the Google cluster 
dataset. Another study [23] proposed an intelligent resource management model based on VM 
failure, utilizing the Google cluster dataset as the training data for the FR-IRM ensemble-based 
model. The FR-IRM algorithm reduced active server and energy consumption by up to 51.2%. 

A study [21] utilizing a commercial network operator dataset proposed a deep learning 
model to predict VNF (Virtual Network Function) instances in Kubernetes. The study 
predicted the variation of VNF instance through the model's learning results and applied them 
to simulate fluid cluster management. The FFNN, LSTM, and CNN-LSTM models were used 
for training, and the MSE, MAE, and RSME indicators were utilized for quantitative 
evaluation of the learning results. In other study [20] compared the CPU traffic prediction 
performance of LSTM, GRU, and 1D-CNN models using a Kubernetes testbed dataset. A 
module was created to generate REST API call patterns based on the Telecom Italia open-
source dataset for 5G network traffic pattern analysis and prediction, creating a dataset that 
includes CPU changes. Another study [24] collected data using Prometheus extensions for 
microservices-based applications such as Cortex and optimized them using linear 
programming to predict microservice resource consumption and CPU optimization. However, 
the data pre-processing process for the creation of multiple pods from a single service, which 
is a characteristic of microservices, was not included in the study. 

 There was a study [25] wherein the standard deviation was reduced through log 
calculation, considering the large variance due to the nature of the resource data; and the data 
were learned using the LSTM model after preprocessing through the Savitzky–Golay (SG) 
filter. In other study [26], Bidirectional Grid (BiGrid)-LSTM, which combines Bi-LSTM and 
Grid-LSTM, was used for prediction. However, the existing machine learning and LSTM 
series are somewhat poor in long-term prediction and suffer from the disadvantage of requiring 
some time to generate the prediction result of the deep learning model. 
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The time series techniques used in existing resource prediction methods have been known 
to suffer from decreased performance in long-term predictions [27], and the inference process 
has also been found to be somewhat time-consuming [26]. Studies have been conducted on 
the development of the Informer model, which reduces the temporal cost of the inference 
process and improves the accuracy of long-term predictions [27], as well as on the use of the 
Informer model to predict RPC traffic in microservices for extended periods [29]. 

In this paper, we propose a cloud data preprocessing module that directly scrapes 
Kubernetes data where microservices are deployed using the Prometheus Client API, and 
refines the data to create a dataset that AI can learn from. After obtaining AIOps learning data 
through the cloud data preprocessing module, we utilized a Transformer-based Informer model, 
which is advantageous for long-term predictions and has shorter inference time compared to 
other models, to create and verify a resource prediction model. 

3. Method 
The goal of this study is to collect the Metric/Log data of the Kubernetes environment where 

micro-services are distributed and to create custom datasets that can predict the 
resource/disability of Pod units by branching data by service. We have developed a cloud data 
refining module that allows for easy extraction of data in the cloud, aggregation of the data to 
fit the analysis target, and creation of a dataset that can be used for AI model training. 

In the existing Resource Prediction study, data is not extracted from clusters but rely on 
benchmark datasets such as existing Google cluster datasets. The problem of the dataset is that 
it is refined data differently from the metrics extracted from the general Kubernetes. To apply 
a model trained on benchmark data to a Kubernetes environment, the extracted data must be 
preprocessed to match the benchmark dataset before training can proceed. Furthermore, to 
apply the generated predictions to an actual service, the preprocessing steps must be repeated, 
which can be cumbersome. In this study, we propose a methodology for directly extracting 
data from a Kubernetes environment and generating cloud-based microservice analysis 
datasets. Using this methodology, we can extract metric data, create AIOps training datasets, 
and provide suitable predictions for the service. 

This study involves the process of extracting and processing data from cloud clusters. After 
collecting data from collectors and metric or log data from each cluster, the AI model could be 
preprocessed, and learning could be done. The preprocessing modules were divided into three 
main parts: Cloud Data Scraper, Metric Integration, and Service Division. The “Cloud Data 
Scraper” collected all the data provided by the cluster, and because the data were metric-
oriented data, there were multiple duplicate timestamps when they were collected in service 
units. In “Metric Integration,” the corresponding problem could be resolved, and the metric 
data generated in the overlapped time stamp were collected. Services that were tied up in the 
integrated state during the gathering process were divided using “Service Division.” The 
different modules are shown in Fig. 2. Example of generating data suitable for learning 
through duplicate data generation and preprocessing during the cloud metric data collection 
process are shown in Fig. 3.  
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Fig. 2. Working process of cloud data refining module. 
 

  
Fig. 3. Duplicate data and suitable data for AI/ML. 

 
The proposed cloud data refining module was configured to purify the Prometheus metric 

data in the Kubernetes environment. The overall structure of the module is shown in Fig. 4. 
The Prometheus Data Scraper, based on the Prometheus Client API that supports the PromQL 
API, collects data and the Metric Integration Module aggregates the collected data by 
converting it from Timestamp-centric to Service-centric and removing duplicate data. Finally, 
the Service Division Module separates the aggregated data by service. One advantage of the 
module presented in this study is that it can be easily used by anyone who owns a Kubernetes 
cluster with Prometheus installed because it directly extracts Metric/Log data from Kubernetes. 
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Fig. 4. Structure of cloud data refining module.  

 

3.1 Prometheus Scrapper 
Prometheus supports Prometheus Query Language (PromQL), and there is a Python “api-
client-python”* that can scrap metric information through Python. This can be used in any 
cluster if there is an environment where Kubernetes and Prometheus are built. The Prometheus 
service URL, collection unit, and collection period should be entered to show the data that 
meet the request. Also, there is a difference in the number of metrics according to the 
Prometheus composition. 

Prometheus data were collected using the metric comma-separated values (csv) through the 
package, and the data were metric-oriented because the data generated by each metric were 
recorded. Additionally, gathering work was needed to generate metric data for each service. 

3.2 Metric Integration Module 
Data were converted from metric-centered data to service-oriented data for service-specific 
resource prediction and failure prediction. After the timestamp, Pods, and values were 
extracted from each piece of metric data, they were collected in the time unit. 

The timestamp of the Prometheus metric was recorded in a minute time difference for each 
piece of data. For example, when a metric called A was recorded in 3.05 s and one called B 
was recorded in 3.92 s, and the data were collected in seconds, duplicate data were generated 
in the same time zone. To prevent this, we adopted a method of collecting metric data that 
occurred below the minimum time unit. Minimum time units can be set in the units of time, 
namely min and s; and the collection method can be applied using the sum, average, and 
median. 
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3.3 Service Division Module 
Data collected to the time unit were divided into metric data corresponding to each service. 
They were branched to include all the metric data recorded in the service and the missing value 
by service in the branching process was replaced with a very small constant value close to zero 
that did not interfere with the analysis. If the minimum and maximum values of the metric 
were missing, the metric was excluded from the analysis target. 

4. Experiment 
In this study, we classified the service branch units of the collected Metric data by setting them 
as Pods through the cloud data preprocessing module and trained using the long-term 
prediction capable Informer model. In addition, we compared and analyzed the extracted data 
with the ETTm1 experiment results used in the Informer paper to determine whether the data 
was suitable for the Resource Prediction task.  

4.1 Data Description 
In this study, we collected metrics related to the CPU and memory for resource prediction, set 
the collection period to one week, and confirmed that there were no obstacles due to system 
collision. The Kubernetes cluster comprised two master nodes and eight worker nodes, and 50 
Prometheus metrics were extracted through the Prometheus Pods present at each node. After 
the metric data were collected, they diverged back to data corresponding to 56 Pods; the 
number of metrics for each Pod differed depending on whether there was a missing value or 
not. Fig. 5 shows the architecture of the cluster environment.  

The generated metric data were minute-to-minute data and had about 6000–10,000 lines of 
data per service. The kube-state-metrics (KSM) service, which was directly involved in metric 
collection, was selected as the subject of the experiment. The linear distribution of metric data 
was excluded from the single target variable. Fig. 6 and Fig. 7 show the metric data extracted 
from the KSM service according to the time flow; “container_memory_usage_bytes” follows 
a nonlinear distribution, whereas “container_cpu_usage_seconds_total” shows a linear 
increase. 

 

Fig. 5. Cluster environment architecture 
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Fig. 6. KSM Pod container_memory_usage_bytes. 

 
Fig. 7. KSM Pod container_cpu_usage_seconds_total. 

 

4.2 Informer 
In this study, we investigated the prediction ability of the Informer model according to two 

categories: multivariate prediction in multiple variables and single variable prediction in single 
variables. The resource prediction comparison group was set as the experimental result of the 
ETTm1* dataset used in the proposed paper, and the learning suitability was examined by 
setting the same elements, namely the input lengths of the encoder and decoder, and the 
prediction period. The performance was evaluated by dividing the prediction period into 24, 
96, and 288 min.  The optimizer applied the Adam algorithm and prevented overmatching by 
performing early stopping and adjusting the learning rate. 
The performance evaluation was conducted by quantitative evaluation to calculate the 

difference between the actual metric value and the predicted metric value, and qualitative 
evaluation to observe the difference between the predicted value and the actual value. The 
MSE for measuring the accuracy of the model's result value as a quantitative index and MAE 
for evaluating the model's performance were used. The main evaluation factors of qualitative 
evaluation were how the model predicts closely with the actual value, and whether there is a 
statistical difference between the actual value and the predicted value. 

 
 

   MSE = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 �𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖�

2         (1) 
 

    MAE = 1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 �𝑌𝑌�𝑖𝑖 − 𝑌𝑌�             (2) 

 
where 𝑌𝑌�  means real value, 𝑌𝑌 means predicted value. 
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Table 1. Quantitative prediction results based on MSE and MAE. 

 Univariate Multivariate 

Dataset ETTm1 KSM ETTm1 KSM 

Pred len 24 96 288 24 96 288 24 96 288 24 96 288 

MSE 0.030 0.194 0.401 0.121 0.145 0.188 0.323 0.678 1.056 0.418 0.443 0.583 

MAE 0.137 0.372 0.554 0.312 0.347 0.405 0.369 0.614 0.786 0.539 0.573 0.660 

 

4.3 Quantitative Results 
Table 1 shows results of prediction experiments for single and multiple variables. In the case 

of a single variable, the MSE index decreased slightly compared to the existing ETTm1 
Dataset when the predicted unit was 96, and the MSE decreased about twice when the 
predicted unit was 288. MAE indicators also showed a similar trend. In the case of multiple 
variables, MSE at the time of prediction 96 was significantly reduced compared to single 
variable, and long-term prediction showed similar trend to single variable. However, the MAE 
index is similar to a single variable.  
In the case of short-term prediction, the index value is larger than the existing experimental 

results, and it is presumed that there is a difference in time series characteristics for the reason 
that the performance is lower than the long-term prediction. As a result of quantitative analysis, 
it is possible to learn, but it is necessary to verify the time series characteristics through 
qualitative analysis. 
 

 
Fig. 8. KSM Univariate prediction. 
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Fig. 9. KSM Multivariate prediction. 

4.4 Qualitative Results 
Fig. 8 compares the values of the 288 single variable prediction using the KSM with the 

actual values. In the section with low variation, it was confirmed that the detailed value was 
followed by the trend rather than predicting the detailed value, and it was confirmed that the 
variation was similarly predicted in the section with high variation. Fig. 9 shows the 
multivariate prediction results trained by KSM dataset; and it is confirmed that it produces a 
prediction value with a lower variation rate than a single variable prediction result. The reason 
why the prediction’s results for each variable have a linear distribution is that the pattern of 
the variables with the cumulative distribution is learned together, so it is confirmed that the 
linear prediction results are generated even in the variable with the volatility.  

 

 
Fig. 10. ETTm1 Univariate prediction. 
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Fig. 11. ETTm1 Multivariate prediction. 

 
Fig. 10 and Fig. 11 represent the single variable and multivariate prediction results learned 

by ETTm1 dataset. ETTm1 dataset has the oil temperature as a dependent variable according 
to the power load and has the characteristics of analog data. Comparing the results of single 
variable predictions by dataset, KSM has a variety of variations and less volatility than ETTm1 
datasets. This is because the target variable of ETtm1 is the oil temperature change rate of 
transformer, and the rate of change is lower than that of KSM dataset composed of digital 
signal, Metric data. 
The qualitative analysis showed that the time series characteristics predicted the approximate 

value compared to the ETTm1 dataset, as the KSM dataset showed a smaller MSE and MAE 
numerical difference in the long-term prediction compared to the ETTm1 dataset. Through 
each experiment, it was verified that learning of resource usage prediction model of micro-
services learned by KSM dataset is appropriate, but it is necessary to supplement diversity of 
metric data to improve model performance. For this purpose, additional collection of data with 
various patterns is required, and a scheduler is designed to store the Prometheus data collection 
and preprocessing results in the database. 

5. Conclusions 
In this paper, we propose a module for collecting and refining Metric/Log data of cloud-based 
microservices for the purpose of AIOps learning. A data set was configured to input the 
Prometheus URL in a cloud environment to conveniently collect metric data, collect duplicate 
data generated in the same time zone without data loss, and then divide the data using 
microservices to predict the amount of resource use under each service. The Informer model 
was used for testing the learning suitability of the AI model using data generated through the 
module, and the ETTm1 dataset test results regarding the Informer model were compared and 
analyzed to verify the learning suitability. Although we confirmed a quantitative difference 
between short-term and long-term predictions, a qualitative evaluation revealed that the 
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difference was caused by dataset characteristics, demonstrating the generation of suitable data 
for training microservice resource usage prediction models. Additionally, we suggest that 
providing long-term resource prediction values would be more helpful for users deploying 
microservices than providing short-term ones when attracting long-term microservices. [28] 

Through this study, our contribution can be summarized as follows: 1. Our study is the first 
study to collect Metric data from microservice and use it for AI learning to predict resource at 
the service level. 2. We propose a method of preprocessing Cloud Metric Data that can be 
collected in cloud clusters into data that can be learned by AI. 3.The easy-to-handle module 
makes it easy for cloud engineers to collect and preprocess data. 

As a limitation, we confirmed through experiments that the short duration of collecting cloud-
based microservice data results in a monotonic distribution of metric data. Additionally, if data 
is collected for a long period, it is necessary to secure data through the module at regular 
intervals. To stably collect data, including the volatility of microservices, we have developed 
a module scheduler and store the results of the cloud data preprocessing module in a database. 
By stably expanding the preprocessed training data, we can expect to improve the performance 
of the resource prediction model by resolving the monotonicity issue of the distribution. As a 
future research direction, we plan to collect data with ensured diversity of metric data through 
concurrent and multiple microservice and failure scenario in cloud clusters. This will aim to 
improve the performance of resource prediction and failure factor prediction for each service 
by supplementing the limitations of Metric data distribution. 
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